The LATEST Innovation
from the inventors of Confocal Max-Flux®

INTRODUCING THE
HOTTEST NEW OPTICS FOR CRYSTALLOGRAPHY

VariMax™ Optics

☑ Flux up to 4x original Confocal Max-Flux® Optics.
☑ Achieve optimum performance over a broad range of unit cell sizes with only one optic.
☑ Superb spectral purity and adaptability to your system.
☑ Optic replacement incentives and cleaning programs available!

QUESTIONS? Call to learn more!
1-800-366-1299

Osmic Inc.
a Rigaku company

1900 Taylor Rd. | Auburn Hills, MI 48326
Vox: 248.232.6400 | Fax: 248.232.6500
www.osmic.com | sales@osmic.com
LETTER FROM THE PRESIDENT

Never send to know for whom the bell tolls, it tolls for thee.” John Donne

The devastating tsunami reminds us all of how fragile life is and how vulnerable we all are. We are especially concerned about the impact of the tragedy upon crystallographers in the countries directly affected by the disaster.

The US community was stunned to learn that among those lost were Muttaiya Sundaralingam and his wife, Indrani, who were attending a family reunion in Sri Lanka. The many students and colleagues that Sunda touched during his long and illustrious career mourn his passing.

At the Budapest meeting of the Executive Committee of the IUCr, the many excellent nominations submitted by the National Committees for officers and membership of the IUCr Executive Committee were reviewed. The Executive Committee as a whole felt a responsibility to select a subset of the nominations to be placed on their official list of nominees. The list of nominees proposed by the Executive Committee was sent to all National Committees on November 9, 2004. The list appears on page 2. According to the bylaws, additional nominations for all positions (other than Past President) may be made by the delegates to the Congress. The procedures to be followed are clearly defined in the bylaws.

A summary of other matters addressed by the Executive Committee in Budapest, masterfully prepared by the Executive Secretary, Mike Dacombe, appears on Page 4.

A review of the records of the composition of the Executive Committee over the course of its 40 year history reveals that the 19 past presidents have come from only 10 of the 40 member countries. They include four presidents each from the UK and USA, three from France, two from The Netherlands and one each from Germany, Italy, Japan, New Zealand, Russia, and Sweden. The 199 members of the Executive Committee during its 50-year history are heavily represented by persons from European member countries (64%), with the rest coming equally from AsCA (17%) and ACA (18%) regional member countries. There are 15 member countries that have never had a representative on the Executive Committee in its 50-year history.

I have previously suggested in these pages that it may be appropriate to consider expanding the size of the Executive Committee to involve leading crystallographers from more member countries in order to better serve the needs of the whole community. This will be particularly so if we are successful in expanding the total membership of the Union to over 50 countries. Some mechanism to insure more equitable representation by our regional affiliates could contribute substantially to the expansion of country membership since the AsCA and ACA regions currently include many potential new member countries.

Resistance to expanding the committee is usually based on the argument that a large committee is unmanageable and ineffective. I am of the opinion that if members of a committee are dedicated and hardworking, increased size is an asset.

The Union needs may well warrant consideration of expansion. Although the IUCr Executive Committee is currently comprised of 10 members, its membership was as high as 12 in the past. An expansion to three members from each of the Regional Affiliates together with the four officers (with no restriction on their regional affiliation) would only number 13, just one more than the IUCr Executive Committee membership in 1966-69.

A review of the list of candidates for membership of the Executive Committee submitted by 24 National countries indicates how well each of these excellent candidates could have served the needs of crystallographers throughout the world. An expansion of the size continued on page 27

The IUCr Newsletter is distributed to 587 libraries and 15,000 crystallographers and other interested individuals in 39 countries. The IUCr also runs Crystallography Online, available at www.iucr.org, as a complement to the IUCr print newsletter. Feature articles, meeting announcements and reports, information on research or other items of potential interest to crystallographers should be submitted to the editor at any time. Submission of text by electronic mail and graphics, slides or photographs by express mail is requested. Items will be selected for publication on the basis of suitability, content, style, timeliness and appeal. The editor reserves the right to edit. Cost of distribution in Albania, Australia, Colombia, Croatia, Cuba, Czech Republic, France, India, Italy, Japan, Malaysia, New Zealand, Poland, Portugal, South Africa, Switzerland, Taiwan, The Netherlands, Thailand, and Venezuela is borne by crystallographic associations or institutions or by individual crystallographers in these countries. Address changes or corrections and requests to be added to the mailing list should be addressed to the editorial office.

If you would like to see a copy of the IUCr Newsletter in your college or university library, send the address to the Newsletter office so that we can add it to our mailing list.

IUCr Newsletter ♦ Volume 12, Number 4 ♦ 2004
Dear Judy,

In 1969, I was appointed Chairman of the Non-Commercial (Instrument) Exhibit of the VIII IUCr Congress. In addition to providing space for people to exhibit their instruments, I made announcements in several publications and contacted the editors of some journals to find names of people who had submitted articles on crystallographic equipment. These people were invited to submit reprints, preprints or posters of their instruments, if they could not bring them to the meeting. We ended up with what was probably the first Poster Exhibit at a scientific meeting. On the first day of the meeting, we were surprised to see Prof. N.V. Belov of the USSR Institute of Crystallography show up toting a large poster. This poster was a tribute to the Braggs and showed the structures of a number of silicate minerals that had been determined by Belov’s group. We gave him a suitably prominent location to display the poster and I took a photograph showing him, in a relaxed mood, next to the poster.

Reuben Rudman

Nominations for Executive Committee of the IUCr 2005-2008

The Executive Committee met in Budapest Hungary, August 24 and 25. At the meeting all nominations for officers and members of the Executive Committee proposed by the National Committees of member countries were considered. The Committee voted in favor of having only one candidate proposed for each office (President, Vice President and General Secretary and Treasurer) and it was agreed that six candidates should be presented for Executive Committee membership for the likely three six-year vacancies and one for the likely three-year vacancy.

The Executive Committee felt it important to rotate the Presidency among the three areas covered by the Regional Associates (ECA, ACA, and AsCA) and that, accordingly, it was appropriate to have a President from Asia - especially as the 2008 Congress will be held in Japan. The Executive Committee felt strongly that it was essential that the General Secretary and Treasurer should be located within easy traveling distance of the Chester Office since the expanding responsibilities of the General Secretary and Treasurer made frequent visits essential.

The high number of excellent nominations received for ordinary members of the Executive Committee was much appreciated by the Executive Committee. Selection of a shortlist was necessarily difficult and there were lively discussions. However, it was clear that not all names could go forward and as it is the responsibility of the Executive Committee to make a selection it was decided that six nominations for the likely three-year vacancy and one for the likely three-year vacancy would be put forward.

The Executive Committee welcomes the increased participation of the National Committees that the more open procedure followed this time has produced. In fact, about twice as many member countries have made suggestions than has typically been the case in the past. According to By-laws 8.2 and 8.4 you may still make your own nominations in Florence, should you so wish.

Concerning the voting procedure, only two responses were received to the Circular concerning the possibility of adopting a single-transferable-voting procedure and so it is clear that there is no mandate for changing the present simple-majority method.

IUCr Executive Committee Nominations

President: Y. Ohashi (Japan)

General Secretary and Treasurer: S. Lidin (Sweden)

Executive Committee Membership:

- **Six-year terms:** P. Coleman (Australia), G.R. Desiraju (India), C. Gilmore (UK), M. Kovalchuk (Russia), C. Lecomte (France), M. Perez-Mato (Spain);
- **Three-year term:** I. Torriani (Brazil);

A nominee for Vice President agreed to by the Executive Committee in Budapest did not accept the nomination. The Executive Committee will decide upon a new nominee for Vice President at a later date.

International Tables Volume G Available Soon

Volume G, *Definition and exchange of crystallographic data*, is the latest addition to the *International Tables for Crystallography* series from the IUCr. It will be available in spring 2005 from Springer (hardback, ~550 pp., ISBN 1-4020-3138-6, see www.iucr.org/iucr-top/comm/commit/volg.html). Edited by S.R. Hall and B. McMahon, this volume describes the standard data exchange and archival file format (the Crystallographic Information File, or CIF) used throughout crystallography. It will be an essential guide and reference for programmers writing crystallographic software and for data managers handling crystal-structure information. It will provide in-depth information vital for small-molecule, inorganic and macromolecular crystallographers, mineralogists, chemists, materials scientists, solid-state physicists and others who wish to record or use the results of a single-crystal or powder diffraction experiment. The volume will provide the detailed data ontology necessary for data managers in other fields to design interoperable computer applications and databases. An accompanying CD-ROM will contain the dictionaries in machine-readable form and a collection of libraries and utility programs.
HUBER Imaging Plate Guinier Camera 670

☑ A factor of more than 100 faster compared to conventional step scan
☑ X-ray powder diffraction in 45° (asymmetric) transmission, 0° to 100° 2-theta
☑ Bulk samples in 17° (fixed grazing incidence) reflection, 50° to 150° 2-theta
☑ Plane foil or capillary samples. 8-fold sample changer for plane foil samples
☑ Vertical mount for liquids, 0° to 20° (adjustable grazing incidence) reflection
☑ Focussing monochromatic radiation, Kα, stripping not required
☑ Range of Bragg angles 100° 2-theta, 20001 steps @ 0.005°
☑ Laser scans signals @ 16 Bit A/D resolution. Linear dynamic range up to 200,000 counts
☑ Creates all common ASCII file types ready for data evaluation like Rietveld-Refinement
☑ Low-temperature attachment: Closed cycle He-refrigerator, 10 to 320 K
☑ Hi-temperature attachment: Diode laser heater, 300 to 1800 K
☑ Hi-pressure attachment: Diamond anvil cell, upto 70 GPa
The IUCr Executive Committee met in Budapest, Hungary, August 25–26 2004. Principal topics discussed were: the launch of a new electronic-only journal in 2005; open access; development of CIF handling software; putting International Tables online; the Florence General Assembly and Congress; and nominations for the Executive Committee and Commissions and voting procedures at General Assemblies.

Excerpts from the Minutes of the Executive Committee meeting

Review of journals. It was noted that the impact factors of IUCr journals for 2003 had all increased.

The IUCr had been successful in its application for a grant from the UK Joint Information Systems Committee (JISC) as part of the open access initiative; in return for the grant, the IUCr’s open access charge for submissions from UK institutions had been waived for 2004.

It was noted that in early 2004 the Commons Science and Technology Committee of the United Kingdom Parliament had undertaken an inquiry into Scientific Publications. Following a Press Release and invitation to submit evidence, the IUCr had written a report on its publishing activities and policies, which was submitted as evidence to the inquiry in February 2004.

The Editor-in-Chief reported on progress with the electronic-only journal Acta Crystallographica Section F: Structural Biology and Crystalization Communications that would be launched in January 2005.

It was noted that grants had been made available from the Journal Grants Fund to institutions in thirteen countries. The IUCr journals were also included in Blackwell’s Synergy and were thereby available as part of the Programme for the Enhancement of Research Information (PERI), through the International Network for the Availability of Scientific Publications (INASP), whereby qualifying developing countries received access at reduced cost.

STAR/CIF. Good progress was reported for two projects: (a) to develop procedures and templates to ensure that mmCIF data files deposited with the Protein Data Bank contained all the information necessary for publication in IUCr journals; and (b) for the development of CIF handling software.

Internet services. It was noted that the Crystallography Journals Online service received about 108,000 requests per day from about 20,000 unique hosts.

Archiving arrangements. Steps being taken to ensure the permanent long-term archiving of all IUCr publications were discussed and IUCr cooperation with a Southampton-based initiative to allow institutional self-archiving of crystal structures by chemists was welcomed.

International Tables for Crystallography. Progress with new volumes and revisions of existing volumes was reviewed. A proposal to make the complete series available online was approved. Additional interactive features would be developed. It was agreed that the charging model for the online version should be subscription based to the complete package.

Progress with a revision of the contract with Springer (formerly Kluwer) for publishing print and online versions of International Tables was noted.

World Directory of Crystallographers. The Executive Committee agreed that the database should be streamlined by including fewer entries for fields of interest and discussed ways of speeding up the updating process by increasing the involvement of the National and Regional Editors.

IUCr Newsletter. The Executive Committee was particularly pleased with the issues covering crystallography in Latin America, Italy and Russia and noted that issues for Germany, Australia and Japan were pending.

Ewald Prize. Prof. Michiyoshi Tanaka had agreed to chair the Selection Committee for the Seventh Ewald Prize, to be presented in Florence in 2005.

Regional Associates. The Executive Committee received reports from the representatives and were pleased to note a Latin American initiative of the American Crystallographic Association.

Relations with other Scientific Unions. The Executive Committee agreed to support the application of the International Commission for Acoustics (presently an Associated Commission of the International Union of Pure and Applied Chemistry) to become a member of ICSU.

Florence Programme. The Executive Committee discussed the programme and approved guidelines for future Congresses that had been recommended by the Florence Programme Committee.

Nominations for members of the Executive Committee and Commissions/voting procedure. The Executive Committee discussed its nominations for the new Executive Committee following commitments by Spain and the USA to pay the outstanding arrears. [The President has subsequently written to the National Committees for Crystallography detailing the recommendations and explaining the reasons for making them]. Only two responses had been received to the President’s circular concerning the possible adoption of a single-transferable-voting procedure at General Assemblies. The Executive Committee therefore decided that there was no mandate to change the existing procedure.

Status of membership. Argentina’s membership had been reinstated by the Executive Committee following commitments by Spain and the USA to pay the outstanding arrears. Ukraine (also suspended) had indicated that it was now in a position to pay annual subscriptions and the Executive Committee agreed to continue to explore possible ways of covering the arrears.

The summer 2005 meeting of the Executive Committee will be held in Florence, prior to the Congress.
Even the best can be improved upon, and we won’t argue the fact. Especially, since we have introduced a better version yet of the best CCD detector for Chemical and Materials Crystallography — the new APEX II

New low noise 4K chip

Large 62 mm chip requires no taper

- Still the ultimate sensitivity
- Better spatial resolution
- Still no spatial distortion
- Lower dark noise and deeper cooling for long exposures
- New electronics with 4-port readout and user selectable speeds for ultra low noise applications

Contact us now or visit our web site to learn more about our ultimate solutions for crystallography.

APEX II
The Best is Better
Ab initio determination of incommensurately modulated structures by charge flipping in superspace

Lukáš Palatinus

The ab initio structure solution algorithm dubbed "charge flipping" [Oszlányi & Süto (2004). Acta Cryst. A60, 134–141] has been generalized towards (3+d)-dimensional superspace. This generalized algorithm allows for the solution of incommensurately modulated structures directly in superspace. This eliminates the necessity of solving the basic structure of the modulated compound, which can be an extremely difficult task in the case of complex modulations. The algorithm succeeded in solving seven of eight tested incommensurately modulated structures. The method has been demonstrated on the modulated structure of tetraphenylphosphonium hexabromotellurate(IV) bis(dibromoselenate(I)).

Octahedral tilting in cation-ordered perovskites — a group-theoretical approach

C.J. Howard and H.T. Stokes

The perovskite (ABX₃) structure can be visualised as a three-dimensional network of regular corner-linked BX₆ octahedra, the A cations being located in the cavities between them. Much of the structural variability arises from different patterns of BX₆ octahedral tilting. This paper deals with perovskites in which the octahedra contain two types of cation, in ordered arrangements, at stoichiometries A₂BB'X₆ and A₂BB'X₁₂. Group-theoretical methods are used to derive details of the structures obtained when this cation ordering occurs in combination with octahedral tilting.

Pseudo-merohedrally twinned praseodymium hexacyanoferrate(III) tetrahydrate

V. Langer, L Smrcok and Y. Masuda

The article describes the structure of the title compound, diaquahexa-
μ-cyano-ferrate(III)praseodymium(III) dihydrate, Pr[Fe(CN)₆]-4H₂O or [PrFe(CN)₆(H₂O)₂]-2H₂O. The crystals, although orthorhombic, space group Cmcm, are pseudo-merohedrally twinned with three components, simulating thus the hexagonal system. The Pr atom is coordinated by eight atoms, viz. six N and two symmetry-related water O atoms. The Pr polyhedron is linked to an FeC₆ octahedron through N atoms, forming an infinite array. The second (symmetry independent) water molecule is not included in coordination and is weakly hydrogen bonded to N atoms.

Coot: model-building tools for molecular graphics

P. Emsley and K. Cowtan

Coot is a new CCP4-friendly molecular graphics program for crystallographic model-building. It is built on a range of free software libraries, including Eugene Krissinel’s ‘mmdb’ and Kevin Cowtan’s ‘Clipper’. An intuitive, modern user interface was an important design consideration. Coot currently provides functionality useful for both experienced and novice crystallographers, including rigid body refinement, interactive real space refinement using modified conjugate gradient (BFGS) minimization, ‘continuous crystal’ electron density and skeleton, interactive Ramachandran plots, NCS density comparison and other model-building and validation tools.
3,3-Pentamethylenediaziridine
A. B. Charette, C. Legault and F. Bélanger-Gariépy

N,N-unsubstituted diaziridines are very useful moieties, being precursors by oxidation to diazirines, more stable structural isomers of diazo compounds, that can be used as carbene precursors. Surprisingly, only crystal structures of either N-substituted or N-complexed diaziridines compounds have been reported so far. The title compound is the first free N,N-unsubstituted 3,3-dialkylidiaziridine to be structurally characterized. The analysis was only successfully achieved using the sealed capillary method. The crystal structure indicates the presence of intermolecular N-H···N hydrogen bonds, resulting in a three-dimensional network.

Structure of Mesorhizobium loti arylamine N-acetyltransferase 1

Arylamine N-acetyltransferases (NATs), first identified through their ability to inactivate the anti-tubercular therapy isoniazid, have now been observed in a broad range of prokaryotic and eukaryotic species. This article presents the 1.8 Å structure of NAT1 from Mesorhizobium loti, a nitrogen-fixing bacterium that lives in symbiosis with leguminous plants. Despite low sequence identity, the NAT1 structure is remarkably well conserved with that of other NATs. This structure adds to the growing number of published NAT structures and will complement current work at identifying bacterial NAT antagonists.

High-resolution strain mapping in bulk samples using full-profile analysis of energy-dispersive synchrotron X-ray diffraction data
A. Steuwer, J. R. Santisteban, M. Turski, P. J. Withers and T. Buslaps

This article demonstrates the feasibility of making strain measurements with both high spatial and strain resolution in bulk (engineering) components. The experiments were undertaken using energy dispersive X-ray diffraction with synchrotron X-rays between 100 and 300 keV on beam line ID15A at the ESRF. The data analysis was improved by using a multiple-peak Pawley-type refinement on the recorded spectra with an asymmetric peak profile. An important area of application is the characterisation of stress fields around crack tips in bulk components.

Radiation damage to a protein solution, detected by synchrotron X-ray small-angle scattering: dose-related considerations and suppression by cryoprotectants
S. Kuwamoto, S. Akiyama and T. Fujisawa

In all synchrotron experiments on biomolecules one has to face radiation damage. In small-angle X-ray scattering experiments at high-brilliant synchrotron sources, protein aggregation results from radiation damage. This paper first describes the quantitative evaluation and understanding of the dose-related phenomena of radiation-induced aggregation that was evident over 400 Gy in the lysozyme solution. Furthermore, it was shown that adding small amounts of cryoprotectants in the hundred millimolar concentration range effectively reduced the radiation damage.

Radiation damage to a protein solution, detected by synchrotron X-ray small-angle scattering: dose-related considerations and suppression by cryoprotectants
S. Kuwamoto, S. Akiyama and T. Fujisawa

In all synchrotron experiments on biomolecules one has to face radiation damage. In small-angle X-ray scattering experiments at high-brilliant synchrotron sources, protein aggregation results from radiation damage. This paper first describes the quantitative evaluation and understanding of the dose-related phenomena of radiation-induced aggregation that was evident over 400 Gy in the lysozyme solution. Furthermore, it was shown that adding small amounts of cryoprotectants in the hundred millimolar concentration range effectively reduced the radiation damage.
You don’t need a

Designed for protein crystallography, the Xcalibur PX Ultra has all the benefits of a rotating anode plus:

“Now I can concentrate on the science rather than keeping a rotating anode running”
rotating anode!

- Comparable performance to a 5kW rotating anode with CMF optics
- Large area 165mm Onyx CCD
- Compact, self-contained X-ray enclosure
- Low cost of ownership
- Low maintenance
Investigations of crystal physics and development of their applications are the main activities of the Kirensky Institute of Physics (Krasnoyarsk). Researchers at the institute study piezoelectrics, ferroelectrics, ferroelastics, and magnetic dielectric crystals, and crystals containing rare earth ions for optical applications.

Methods of group flux melt growth developed here provide a means to obtain high quality bulk crystals of Copper-germanium oxide, lead gallium germanate, and copper metabolite under controlled conditions. Neodymium-activated crystals of gadolinium-gallium garnets synthesized by this method appear to be a single-center medium with more than 10 at. % of Nd³⁺.

Searching for new crystals demands systematic analysis of known structures to provide a foundation for a reliable prognosis. Such analysis has been performed for oxide- and halogen-based perovskites, antiperovskites, elpasolites, anion- and cation-deficient and layered perovskite-like structures, including high temperature superconductors. Group-theory and crystallographic analyses of phase transitions in these structural families have been made as well.

Structures of synthesized crystals are investigated using powder and single crystal X-ray analysis. Neutron scattering data are used in collaboration with the Joint Institute of Nuclear Research (Dubna, Russia), the Hahn-Meitner Institute in Germany and the Laboratoire Leon Brillouin at the Saclay Neutron Center in France.

Fundamental goals are to correlate physical properties of materials with their crystal structures and to determine the impact of external forces on crystal parameters and phase transitions. Physical properties studied include electric and magnetic parameters, acoustic and optics measurements, heat capacity and thermal expansion. With Krasnoyarsk State University, nonlinear electro mechanic properties higher order elastic coefficients, electrostriction, and nonlinear piezoeffects are studied. A study of β-K₃SO₄ crystals revealed a complex sequence of phase transitions that include disordered and incommensurate phases. Radio spectroscopic and optical second harmonics investigations of incommensurate phases are conducted. The concept of solution density measurements by NMR analysis was formulated here and Raman scattering selection rules for these phases have been developed and experimentally tested. Recent investigations have focused on complex phase transitions of halogenides and oxyhalogenides with perovskite-like structures including structurally disordered ferroelectric-relaxors.

A theory of structural phase transitions is being developed in parallel with experimental investigations. Phase transition sequences with interacting order parameters are developed based on group theory and thermodynamics and applied to families of crystals. Attention is focused on model descriptions of these phase transition sequences. Ab initio approaches are being developed that describe the stability, lattice dynamics and physical properties for complex crystal structures like layered perovskites and elpasolites.

In 1976 the Krasnoyarsk School of Crystal Physics began a series of Soviet (now – Russian) – Japanese symposia on the physics of ferroelectrics that continues to the present day.

Contact: K.S. Aleksandrov kaleks@iph.krasn.ru

Kirensky Institute of Physics

Crystallography in Russia part 2
Material Studies in Petrozavodsk

At the X-ray laboratory of the Petrozavodsk State University, amorphous oxide films, amorphous and crystalline powders and bulk materials are studied. X-ray diffraction patterns from symmetric and asymmetric reflection and transmission geometry are obtained on a DRON-4 diffractometer using monochromatized radiation of various wavelengths.

The short-range order characteristics of amorphous, amorphous-crystalline and small dispersion materials are defined using the Finbak – Warren approach: the D(r) curves are presented as a sum of pair functions. We have identified the short-range order characteristics of amorphous oxide films of aluminum, silicon, tantalum, niobium, tungsten, yttrium, and vanadium, produced under different conditions of anode oxidation; WO$_3$ films, thermally evaporated in vacuum; silicon films, produced by monosilane pyrolysis at various temperatures; thermal silicon dioxide films; and manganese dioxide produced by pyrolysis of manganese dihydrate. Computer simulations of the structures of amorphous materials are calculated using the methods of continuous static relaxation, molecular dynamics, and non-ordering networks.

Octahedrally and tetrahedrally coordinated cations with distorted fcc packing of oxygen atoms in the system “aluminum-vacant cationic positions” were considered in terms of short-range order coefficients. The cationic subsystem of amorphous aluminum oxides is characterized by a short-range order qualitatively analogous to the arrangement of aluminum atoms in the boehmite and pseudoboehmite modifications of the γ-Al$_2$O$_3$ phase. The correlation length in the system “aluminum-vacant cationic positions” is not less than 5 Å. It was shown that the short-range order in amorphous oxide films of Ta$_2$O$_5$ and Nb$_2$O$_5$ can be regarded as similar to the atom positions in the crystal modifications β-Ta$_2$O$_5$ and γ-Nb$_2$O$_5$. The X-ray study and molecular dynamic computer simulation of amorphous anodic tungsten oxide showed that the arrangement of W and O atoms in the coordination spheres corresponds to the characteristics of the crystalline WO$_3$·(1/3)$_2$ modification. WO$_3$ films, thermally vaporized-in vacuum, have a quasi-amorphous structure characterized by the presence of crystallites shaped like orthorhombic phase parallelepipeds with dimensions 15x8x20 Å.

The short-range order in amorphous oxide films and powder of Y$_2$O$_3$ depends on anode oxidation conditions. Moreover, the first coordination number changes from 5 in colored oxides to 7 in black and powdered oxides. The short-range order is described in terms of models of disordered networks of octahedra, pyramids, and structural units, consisting of seven oxygen atoms. In amorphous fulleride C60 short-range order corresponds to the lonsdellite crystalline phase. The main publications describing this work are in Crystallography Reports and Acta Crystallographica.

Contact: Lioudmila A. Aleshina alkftt@mail.ru
Crystallography in Novosibirsk

Almost 1.5 million people live in Novosibirsk, more than 30,000 are involved in the work of the Novosibirsk Scientific Center. Novosibirsk State University is surrounded by about 40 research institutes of the Russian Academy of Science. Integration of the Novosibirsk State University with the Russian Academy of Sciences was always exceptionally high for Russia. Crystallography is widely applied in many institutes, ranging from traditional applications in chemistry, physics, biology, and ending with archeology. Novosibirsk is a huge high technology industrial center with vast potential for studies with broad applications.

Solid State Chemistry and Mechanochemistry

The group of Elena Boldyreva divides its activities between the Institute of Solid State Chemistry and Mechanochemistry (Siberian RAS, Novosibirsk) and the Novosibirsk State University.

Research: Boldyreva is a physical chemist who specializes in studies involving solid-state kinetics, inorganic solids, coordination compounds, and organic molecular solids with a special emphasis on pharmaceutical and biomimetic systems. Fields of research include solid-state reactivity, crystal engineering, polymorphism, crystallographic computing, database analysis, high-pressure and low-temperature crystallography using single-crystal and powder X-ray structure analysis, systems studied include Co(III)-ammine complexes and polymorphs of paracetamol, glycine, serine, hexafluorosilicates, benzoquinone, and sodium oxalate. The effect of high pressure on a solid has been systematically compared with that of cooling. Diffraction studies are complemented by IR- and Raman spectroscopy, thermal analysis and calorimetry, and optical microscopy.
The group collaborates with other research teams studying mechanochemical synthesis and mechanochemical modification of pharmaceuticals. They also work with colleagues from the Institute of Mineralogy, the Institute of Catalysis, the Institute of Semiconductor Physics, the Institute of Genetics, and the Institute of Archeology in Novosibirsk. With the latter, they have characterized samples of ancient Siberian ceramics. The group is actively involved in research in a multidisciplinary Research and Education Center REC-008 “Molecular Design and Ecologically Safe Technologies”, and in the Center of Joint Exploitation of Equipment “Integration”.

Education: The group is active in teaching solid state chemistry, crystallography, structural analysis and supramolecular chemistry at Novosibirsk State University. All chemistry students at the university attend the courses. Former students work at various research institutes of the Russian Academy of Sciences, in industry and abroad. In recent years the group has included PhD students and post-docs from Barnaul, Tomsk, Kemerovo, and Petrozavodsk. The teaching activities of the group were described in articles in the *Journal of Chemical Education* [J. Chem. Educ, 1993, 70(7), 551-556 and 2000, 77(2), 222-226.]. E. Boldyreva, a lecturer at international schools, has translated E. Wood’s “Crystals” and “Supramolecular chemistry” by J.-M. Lehn into Russian. In 2000 the group initiated a series of Novosibirsk summer and winter schools on “Hot Topics of Chemistry, Biology, and Physics”, which are attended by school-children and teachers from all over Siberia. The group is an active member of the SigmaXi International Research Society and participates in the “Distinguished Lecturers” program.

International Collaborations: Boldyreva has been a visiting research scientist in Germany, France, Italy, and Great Britain. Many of her former hosts and “western colleagues” have visited Novosibirsk, to lecture, exchange ideas, and test equipment. The group has traditional collaborations in Europe, good contacts in the USA, and has recently signed an Agreement for Cooperation with Wits-University (Johannesburg, South Africa).

Contact: Elena V. Boldyreva (boldyrev@nsu.ru)

in vivo X-ray Diffraction Analysis of Cystic Calculus

The potential to use synchrotron radiation for medical diagnosis *via in vitro* X-ray diffraction is being explored at the Synchrotron Center of the Institute of Nuclear Physics in Novosibirsk.

Urologists remove cystic calculi *via* lithoclasty without an abdominal operation, and fragments of calculi are excreted through the urinary tract. Analysis of the collected biominerals permits determination of a specific form of urolithiasis, which can guide therapy and prevent recurrence. These methods analyze cystic calculi only after their removal. It would be helpful to determine the composition of a crystal calcu without surgery.

We have attempted to model *in vivo* X-ray diffraction analysis of a cystic calculus. A surgically obtained calculus (5 x 3 x 3 mm) was placed into pig tissue with a high fat content. The investigation was carried out with quanta in the range 30-34 keV at an X-ray diffraction station [1] installed at the 4th synchrotron radiation beamline of the VEPP-3 storage ring in the Synchrotron Center.

First, a diffraction pattern of the cystic calculus was obtained. Then, the calculus was placed into the model fatty tissue and a new diffraction pattern was recorded. An example of a diffraction pattern from a cystic calculus in fatty tissue is shown in Fig. 1. Fig. 2 illustrates a comparison between the calculus imbedding in fatty tissue (top) and the pattern for a sample of monohydrate calcium oxalate (bottom).

![Figure 1](image1.png)

![Figure 2](image2.png)
Superconducting Wigglers and Shifters

Budker INP at the Institute of Nuclear Physics, Novosibirsk has significant experience in the development and construction of superconducting insertion devices (ID). The first superconducting 20 pole wigglers was assembled in 1979 for the VEPP-3 storage ring. During the last 10 years, new types of superconducting wigglers and shifters for a number of storage rings around the world have been constructed. Strong field wigglers or wavelength shifters are installed in the straight section of the storage ring to enhance the performance of the machine for short wavelength users and to provide new possibilities for SR experiments. Reasons to install wigglers or shifters on a storage ring include: (1) to shift the spectrum to the hard X-ray region by using the higher magnetic field of the wiggler (shifter); (2) to increase the photon flux due to many poles (multipole wiggler); (3) to obtain new features of radiation such as polarization; (4) to obtain flexibility for experiments due to the possibility of changing the wigglers field during the experiment; (5) to decrease or increase the emission of the storage ring; (6) to decrease the polarization time of the electron (positron) beam; and (7) to create a slow positron source of high brightness. Generally a wigglers or shifter consists of a magnetic system, a cryogenic system, a vacuum system, a control system and power supplies.

Contacts: B. P. Tolochko b.p.tolochko@inp.nsk.su

Inorganic Crystallography

The Crystal Chemistry Laboratory, established in the Siberia Nikolaev Institute of Inorganic Chemistry, SB RAS / Siberia Chemistry Laboratory in 1958 by Prof. G. Bokii (1909-2001), is the oldest and largest crystallography center in Siberia. The laboratory staff consists of 16 researchers, several engineers and students involved in X-ray structural and crystallochemical studies. The laboratory is equipped with powder and single crystal X-ray diffractometers. Research at the laboratory includes studies of inorganic and coordination compounds (S. Borisov, N. Podberezskaya, and S. Solodovnikov); transition metal coordination compounds including molecular magnetic materials and volatile complexes (N. Pervukhina, I. Baidina, S. Gromilov, L. Glinskaya, V. Alekseev, and T. Polyanskaya); complex oxides including molybdates, tungstates, hypophosphites, chlorites, natural and modified zeolites (R. Klestsova, S. Solodovnikov, D. Naumov, and V. Bakakin); transition metal and boron cluster compounds (A. Virovets; S. Solodovnikov, T. Polyanskaya, and D. Naumov); mercury-containing minerals and their analogs (S. Magarill and N. Pervukhina); and supramolecular compounds containing transition metal complexes and cucurbit[n]urils (A. Virovets and N. Pervukhina).

High-quality powder patterns of bulk materials and films prepared in the institute (S. Gromilov) have been provided for the ICDD Grant-in-Aid Program (V. Lisoivan). Software that includes searches for cation sublattices and cavities, comparison and visualization of structures has been written (D. Naumov).

The laboratory produces about 100 crystal structures and 50 publications per year. Interesting recent results include: •The structure-forming role of cations in some classes of inorganic compounds that results in regular close-packed cationic arrays; •The structure-forming role of Hg-O, Hg-S, and Hg-Hg covalent bonds that results in the formation of rigid mixed mercury-anion clusters, ribbons, layers and 3D frameworks in inorganic mercury-containing compounds; •Algorithms for generating 3D tetrahedral clathrate frameworks using the duality of polyhedral
clathrate hydrates and intermetallic structures.

The laboratory takes an active role in the education process of students in the Chemistry Department of Novosibirsk State University and cooperates with colleagues from Russia, Germany, UK, and Spain.

Contact: Sergey Gromilov, grom@che.nsk.su

Helically polarized radiation sources development in Budker INP, Novosibirsk

In recent years Budker INP has designed and manufactured several insertion devices for the generation of helically polarized radiation.

Contact: B. P. Tolochko (b.p.tolochko@inp.nsk.su)

General view of one of two halves of elliptical electromagnetic undulator for advanced SR source SLS (Switzerland).

Advanced X-ray Detectors, INP

A fast, parallax-free, one coordinate detector OD-3 has been designed for angular measurements in diffraction experiments on a synchrotron X-ray beam with a photon energy around 10 keV within an angular aperture of 30 degrees. The OD-3 detector consists of a proportional chamber, CAMAC crate with electronics and a host IBM PC compatible computer. The proportional chamber of the OD-3 has a drift volume where the coordinate of quantum along the anode wire is detected by measuring the charge induced on the strips of the lower cathode plane. A peculiar shape of cathode strips “focused” on the object under study provides parallax elimination. The design of the detector allows the minimum focus distance to be 350 mm with conventional ones of 350 mm and 1.5 meters. Events are stored in the Incremental RAM (256K x 32) in the Processor Unit and can be read into the computer for processing, visualization, and long-term storage.

Contact: B.P. Tolochko, B.P.Tolochko@inp.nsk.su

Main parameters of the OD-3 detector

- inlet beryllium window: 300 mm x 10 mm x 0.2 mm;
- conventional operational gas mixture: Ar / 10% CO2;
- excessive pressure in gas chamber: 10 – 2 atm;
- photon energy range: 15 – 15 keV;
- detection efficiency (for 8 keV photons): 30 %;
- maximum detection angle: ± 15 degrees at the focal distance 350 mm, ± 3.5 degrees at the focal distance 1.5 meter;
- 15328 channels;
- scale:
- channel width: 60 μm (0.01 degree at f = 350 mm);
- maximum number of frames: 1024 frames;
- frame time range: 1 μs ÷ 256 seconds;
- space resolution (Eγ = 8 keV, STP), FWHM: 150 μm (0.025 degree at f = 350 mm);
- linearity: 1.05 %;
- differential nonuniformity, R.M.S.: < 2.5 %;
- counting rate (at 50 % non-efficiency) 10 MHz/detector

Emerald BioStructures Products

Emerald BioStructures Products offers a truly integrated, forward-thinking and upgradeable Systems for Crystallography. Our relational database application, Crystal Miner™, has been in use for over 6 years. Designed and used by Crystallographers, Crystal Miner™ allows for Plug-n-Play compatibility with the Matrix Maker™, MicroShot Dispense Module, Crystal Monitor™, and CrystEL™. To learn more visit us at www.decode.com/emerald.
High-performance X-ray data collection systems

mardtb/csc
- Advanced goniostat with integrated automatic cryogenic sample changer
- Easy manual or automatic sample mounting and centering
- Fully automated alignment to the X-ray beam
- Ideal laboratory screening station with mar345 or marccd
- Complete state-of-the-art high-throughput beamline endstation with marmosaic CCD detector

marmosaic
- Seamless multi-element CCD technology
- 225mm x 225mm or 325mm x 325mm active area
- Multichannel readout in 1 second
- Low noise, low dark current design for fully usable 16-bit dynamic range

marccd
- Largest available single chip design: 165mm diameter
- Based on 4k x 4k CCD with four parallel readouts
- Low noise, low dark current design for fully usable 16-bit dynamic range
- Versatile detector for rotating anode and synchrotron beamlines

mar345
- Calibrated image plate
- Fast spiral readout
- Ultralarge 345mm diameter
- Perennial standard for accuracy and reliability
The marmosaic 225 with mardtb goniostat and cryogenic sample changer is a complete endstation for high-throughput crystallography.
The Structure of Quantum Dots by XAFS

Surface sensitive EXAFS- (Extended X-ray Absorption Fine Structure) and XANES- (X-ray Absorption Near Edge Structure) techniques are used at the Nikolaev Institute of Inorganic Chemistry, Institute of Semiconductors Physics and Budker INP SB RAS, Novosibirsk to determine the spatial and electronic properties of heteroenergious surfaces[1,2]. Uniform Germanium nanoislands deposited on Si(001) and Si(111) substrates via molecular beam epitaxy (MBE) (Fig.1) exhibit quantum dot (QD) properties. The influences of effective thickness of the Ge film, Ge nanocluster sizes and deposition temperature on the QD microstructure parameters were determined by EXAFS and XANFS techniques. The effective thickness varied from two to ten monolayers for the films studied. Two-dimensional pseudomorphic Ge films have been grown up to a critical thickness of four monolayers on Si(001). As a result of continuing deposition, pyramid-like Ge islands were grown in the Stranski-Krstanov mode. Local microstructure parameters are linked to nanostructure morphology and models are proposed. The Ge islands that form during growth are characterized by interatomic Ge-Ge distances of 2.41 Å (0.04 Å less than in bulk Ge). Pure Ge nanoclusters are covered by a 1-2 monolayer film with an admixture on the average of 50 % Si-impurity due to interface diffusion from blocking Si layers at 500°C. The monotonic size of germanium nanoclusters were determined as a function of film thickness and the influence of temperature change was measured. That microstructural parameters of Ge/Si heterosystems are largely influenced by elastic deformation at the boundaries due to a mismatch of lattice parameters of the nanocluster and substrate was detected by direct measurement showing that EXAFS spectroscopy is a useful tool for the study of materials containing nanostructures.

Contact: B. P. Tolochko, B.P.Tolochko@inp.nsk.su

Nanoparticles Nucleation under Extreme Conditions

Production of materials with new properties can be achieved via synthesis under high temperatures, high pressures and nonequilibrium conditions. To collect data under these conditions, equipment with nanosecond time resolution, high sensitivity to phases at low concentrations and high penetrating depth (millimeters) should be used. Synchrotron radiation has the required characteristics.

For generating high temperatures and pressures we use explosions and shock waves. During the explosions in our experiments pressures can reach 2 Mbar with temperatures up to 8000° C. We have developed an “extreme conditions” synchrotron radiation beamline which allows us to investigate the dynamics of phase transformations during explosion and shock wave impact. In particular we have investigated nucleation and growth of diamond and metallic particles by small angle X-ray scattering (SAXS). We have observed nuclei with sizes near 30 (at t=1.5 µs) and dynamic of growth up to 70 during 2 µs. The influence of different conditions on kinetics of nanoparticles growth have also been investigated.

Contact: B.P. Tolochko, B.P.Tolochko@inp.nsk.su

An X-ray Detector for Imaging Explosions

Very short pulses of synchrotron light irradiated by individual electron bunches allow imaging of the development of a detonation wave and the changes of electron density within a volume of exploding materials. Such experiments require an exceptional set of parameters from the detector. In order to view independent images from different electron bunches, time resolution of the detector has to be less than bunch crossing time. A new detector for imaging fast dynamic processes and explosions with SR beam (DIMEX) was constructed in Budker Institute of Nuclear Physics. Details of the instruments construction are reported in the references below. In order to investigate the structure and velocity of a detonation wave in an explosion, as well as density distribution inside and around the exploding sample, the projective absorption experiments were conducted using DIMEX. The collimated line-shaped beam passed through the sample and the distribution of X-ray flux was measured. Our beam was ~12 mm wide and 1mm high. The samples were 12.5 mm in diameter and 100 mm cylinders made of a mixture of hexogen and TNT. The sample was positioned with its axis either parallel or perpendicular to the beam plane. The start of the measurement sequence could be synchronized with the detonation to within ~0.5s. A sequence of Small angle scattering (SAXS) images give information about the concentration of particles with different dimensions in an object. The result of a series of projective absorption experiments is shown in Fig. 2. In order to improve the precision, the results of 10 measurements were summed with proper synchronization. The horizontal axis of the figure is the position perpendicular to the axis of the sample. Time axis is in vertical in units of 500 ns.

The time dependence of small angle X-ray scattering during diamond nanoparticle nucleation and growth under shock wave compression. Time t= 1 µs corresponds to room temperature and pressure, time t=1.5-3.5 µs – to high temperature and pressure.

Figure 1. Design of the detector
The experimental scheme for in situ SAXS investigation of shock wave impact on various materials.
The figure shows the detonation wave and the reaction zone with very high density just after the detonation front. The technique of very fast imaging opens opportunities in an area of fast dynamic SAXS and WAXS (wide-angle X-ray scattering) studies of objects under the influence of different external factors like temperature, pressure, light etc., or internal meta-stable or exited states.

International Tomography Center

Current research at the International Tomography Center of the Siberian Branch of the Russian Academy of Science (ITC SB RAS) in Academgorodok, Novosibirsk) is centered on designing molecular magnets. This work involves the synthesis of solid organic, metal-organic or coordination compounds that are formed from molecules or ions containing paramagnetic centers (i.e. molecules or ions having unpaired electrons) and for which a magnetic phase transition in the magnetic-ordering state can be determined. The current state-of-the-art in synthetic chemistry allows one to produce solid compounds with desired structural features starting from molecular precursors in solution. Crystals grown from these solutions can be designed to form chained, layered or frame polymers. However, to produce a magnetic phase transition in a ferromagnetic state not only the formation of layered or frame structures is required, but the presence of effective exchange channels between the paramagnetic centers is also necessary. Understanding the molecular and crystal structure of magnets allows the elucidation of the system of exchange clusters in solids and reveals magneto-structural correlations; the interrelation between the structure of a paramagnetic ligand, its coordination, the nature of the central atom, the character of molecular packing, and magnetic properties. In some cases a series of X-ray diffraction experiments covering a wide range of temperatures is necessary to identify the structural changes occurring in solids of coordination compounds leading to a change in magnetic properties. At the ITC SB, X-ray diffraction studies of stable nitroxides and heterospin nitroxide-containing coordination compounds have been performed. The discovery of so-called “breathing” crystals is the most significant result in recent years. “Breathing” crystals are a group of Cu(II) hexafluoroacetylacetone complexes with spin-labeled pyrazoles L(R = Me, Et, Pr, Bu) - Cu(hfac) L(R), having a chain polymer structure with a “head-to-head” or “head-to-tail” motif that results in bridging coordination of L through the N atom of pyrazole and the O atom of the nitroxide group. These complexes are characterized by a reversible magnetic phase transition and a 10% compression of a unit cell up to 300 Å in absolute value. As temperature is lowered single crystals retain the quality necessary for X-ray diffraction, despite the occurrence of a structural phase transition. This allowed us to study compounds at different temperatures and to reveal the most important components of structural dynamics. Phase transition manifests itself in a sharp change in the coordination polyhedron of Cu(II). Also, weak ferromagnetic properties of Cu(II)-O•-N clusters can be exchanged for strong antiferromagnetic ones. X-ray diffraction studies over a wide temperature range as well as investigations of crystal structures with long unit cell parameters became possible due to the acquisition of a Smart Apex (Bruker AXS) CCD diffractometer. Currently more than 300 structures per year are determined in ITC SB RAS.

Contact: L. Shekhtman (lshekhtm@inp.nsk.su)

Contact: Dr. Galina Romanenko tev@tomo.nsc.ru

Control nucleation

Guaranteed dust free
RNase free
No Need to silanize
Unbreakable

CrystalClene™ Slips represented a breakthrough in ready-to-use cover slips for hanging drop when first introduced by Molecular Dimensions - round or square, 18mm or 22mm

Intelligent solutions for protein crystal growth

Contact: L. Shekhtman (lshekhtm@inp.nsk.su)

IUCr Newsletter ♦ Volume 12, Number 4 ♦ 2004

19
Neutron Diffraction in Russia

Use of neutron diffraction for crystal structural investigations began in Russian the early 1960s. The IBR reactor in the Joint Institute for Nuclear Research (JINR) (Dubna, Moscow Region) was the site of many scientific achievements, including the first pulsed neutron source in the world where time-of-flight methods were used for crystallographic experiments. At present neutron diffraction studies of atomic and magnetic structures in Russia are carried out at 4 large scientific centers with operational high-flux neutron sources: the Kurchatov Institute (Moscow), the Petersburg Nuclear Physics Institute (Gatchina), the Institute of Metal Physics (Yekaterinburg), and the Joint Institute for Nuclear Research (Dubna).

In the Kurchatov Institute, a IR-8 steady state reactor of 8 MW nominal power and average neutron flux of about 1·10^{14} n/cm^2/s is used. The single crystal MOND and powder DISC diffractometers are the main instruments used for crystal studies. The PG double-monochromators are used at both diffractometers, which helps in varying wavelengths over a wide range (0.7 Å - 5.5 Å for MOND) with a 1·10^{15} n/cm^2/s flux at a sample position if 1 ≤ 2.4 Å. With the MOND instrument dynamical effects were discovered in neutron magnetic scattering. (“Magnetic Pendellosung effect in neutron scattering by perfect magnetic crystals” Acta Cryst. A, 1992, v.48, 100). Resonance magneto-acoustic and acousto-magnetic effects were experimentally found in perfect crystals of weak ferromagnets. It was found that measured neutron magneto-acoustic resonances are essentially non-linear in nature, which can be seen in the conditions of their stimulation, shape of resonance peaks, and evolution of oscillations over time. It was also established that magneto-acoustic non-linearity is connected with anharmonicity of a magnetic sub-system (Physica B, 1998, v.241-243, 736).

The Multi-counter diffractometer DISC is intended for structural studies of microsamples. The low background levels and large solid angle of the detector system allow measurement of diffraction patterns from samples about 1 mm^3 in volume in reasonable time. It permits crystal structure studies at very high external pressure in sapphire or diamond anvil cells. The main advantages of these cells are their small dimensions and the possibility of putting them into a refrigerator and cooling them down to helium temperatures. At DISC atomic structures and phase transitions in hydrides, oxides, fullerences and amorphous substances are studied (see, for instance, “Pressure induced spin-orientation transition in FeBO_3,” High Pressure Research, 2000, v.17, 179).

The steady state reactor IVV-2M of 15 MW power (Fig. 1), which operates up to 6000 hours annually, supports the “Neutron investigations of condensed matter” Centre, which belongs to the Institute of Metal Physics (Yekaterinburg). In this Centre there are several neutron diffractometers and special devices for investigations of physical properties of both conventional and radioactive samples. Among them: a multi-counter high-resolution powder diffractometer (λ=1.515 Å, Δd/d=0.002), two medium-resolution diffractometers, and a multi-counter four-circle single-crystal diffractometer. They are all equipped with special cells for radioactive samples studies in 4.2 ÷ 1000 range after their irradiation in the reactor core. For high-pressure experiments, cylinder-piston cells up to 1.2 GPa are used. In the Centre, study of the influence of various defects (doping, non-stoichiometry, disorder caused by irradiation with fast neutrons, light or heavy ions, electrons) on crystal structure is the main topic. The main goal of these studies is to study the relation between real (defect) crystal structure and physical properties. In the Centre, studies of structural and magnetic phase transitions, charge ordering in oxides and inter-metallic rare earths or 3d-transition element compounds are also carried out (J. of Alloys and Compounds, 2001, v. 315, 82).

At the Joint Institute for Nuclear Research (JINR) in Dubna, neutron scattering experiments are performed at the IBR-2 pulsed reactor with record average power (2 MW) and pulsed neutron flux (1·10^{16} n/cm^2/s). The IBR-2 set-up includes three diffractometers for structural studies of single crystals and powders and three diffractometers for texture and internal stress measurements.

The Fourier high-resolution diffractometer (HRFD) is analogous to the mini-SFINKS facility in Gatchina, but with higher d-spacing resolution (Δd/d=0.001 - 0.0005). A study of mercury-based high-Tc superconductors with various percentages of oxygen or fluo- rine in the basal plane is an example of an experiment using the HRFD (Figs. 2 and 3). In these studies several results of significance for understanding high-Tc superconductivity in copper oxides have been obtained. Recently, a series of diffraction experiments with doped CMR manganites has been performed. Precision structural analysis of several compounds, including compositions enriched with ^{18}O isotope, provides unique data (Eur.
magnetic structures at normal pressure, stabilization of the AFM of 16 – 300°. In these compounds which have significantly different investigated at pressures up to 4.5 GPa and in a temperature range separation in La is the mesoscopic phase is needed. A typical ex-

if its very high resolution be used for single crystals p.215, Fig. 4). HRFD can furnace, Huber goniometer etc.) allows one to broadly vary experi-

A, 2002, v.74, S86). Auxiliary equipment (loading device, mirror measurement of neutron Fourier techniques at long-pulse neutron sources, which is carried out in collaboration with PNPI. FSD is optimized for internal stress measurements in bulk materials (Applied Physics A, 2002, v.74, S86). Auxiliary equipment (loading device, mirror furnace, Huber goniometer etc.) allows one to broadly vary experimental conditions. EPSILON (Δd/db=0.003) is used for stress measure-

intended for texture analysis on rock samples. It is equipped with a high pressure chamber (P =1.5·10^4 N, T =700°C) in which the diffraction study of textures of amphibolites and gneisses from the super deep borehole SG-3 in the Kola Peninsula and their analogues from the surface were performed (XXVIII General Assembly of the European Seismological Commission. Italy, Genova, 2002).

Broad perspectives for neutron diffraction studies in Russia will be opened when a new steady state high-flux reactor PIK (W=100 MW), which is under construction in PNPI (Gatchina) opens. Very high neutron flux from PIK, modern equipment, and wide experience in diffraction studies will all help in solving both fundamental and applied problems

Contact: Anatoly M. Balagurov bala@nf.jinr.ru

L.Ya.Karpov Institute of Physical Chemistry

The X-ray Laboratory in Karpov Institute established in 1938 by G. Zhdanov has become one of the largest centers of X-ray analysis in the former Soviet Union and Russia. The laboratory staff is engaged in projects with chemists from the Russian Federation, Georgia, Latvia, Moldova, the Ukraine, Sweden, Denmark, Spain, Portugal, and South Africa. Several thousand structures have been determined and deposited in the the Cambridge and Karlsruhe databases. Special procedures have been developed to speed the process of data collection using programs PROFIT (profile fitting) and PAN32 (profile analysis) to treat data collected on Syntex, Nicolet and Enraf Nonius diffractometers. A method has been developed for evaluating the contribution of thermal diffuse scattering (TDS) to structure factors based on scanning peak profiles (program DISCONT). The Rietveld method is also widely used in powder crystal experiments.

High-precision X-ray diffractometry has allowed us to perform electron density studies and a new method for determination of the electron localization function from electron density has been developed. Recently, new computer software for charge density studies (WinXPRO2003) was released as part of a joint project with the Mendeleev University, Moscow.

contact: www.nifhi.ac.ru/~adam

St. Petersburg State University, Department of Crystallography

The Department of Crystallography at St. Petersburg State University was established in 1924 by students of E.S. Fedorov. During the last ten years investigations have focused on structural chemistry, structural mineralogy, and crystal growth. Almost every year a national or international conference is organized by the Dept. The XV International Conference on X-ray Diffraction and Crystal Chemistry of Minerals in September, 2003 was organized by the Commissions of X-ray Analysis of Minerals and Crystal Chemistry of the Russian Mineralogical Society RAS. The Department has collaborations with institutes and universities in Germany, USA, Switzerland, Netherlands, and Austria, etc. Below we provide a brief description of the main scientific groups.

The Borate and borosilicate group (Rimma S. Bubnova, rimma_bubnova@mail.ru and Stanislav K. Filatov, filatov@crystal. pu.ru) investigates borate and borosilicate crystals and glasses in collaboration with Peter Paufler (Paufler@physik.tu-dresden.de) at Dresden Technical University, Germany. The first crystal structure determinations of borates at elevated temperatures demonstrated the rigidity of boron-oxygen groups that maintain their configuration and size on heating. Highly anisotropic thermal expansion of 40

Figure 5. Diffraction pattern of the La$_2$CuO$_{4+δ}$ single crystal measured at 10 K with HRFD. Figures denote the reflection orders. Each line is split, as shown for 12th order in the insert, due to crystal phase separation on the oxygen rich and oxygen poor phases.

Figure 6. Phase transformations of high pressure heavy ice VIII, studied by neutron diffraction at DN-2 instrument. At the beginning time / temperature scale T=94 K, at the end T=275 K. The heating rate was =1 deg/min. Diffraction patterns have been measured each 5 min. Phase VIII is transformed into cubic phase Ic and then into hexagonal ice Ih.
borates has been described for the first time and has been interpreted as a result of hinge deformations. (S.K. Filatov, R.S. Bubnova, Phys. Chem. Glasses, 2000, 41, N 5, 216-224).

Since 1977, 150 minerals of volcanic eruptions from Kamchatka volcanoes were characterized by the Volcano group (S. K. Filatov, filatov@crystal.pu.ru) in collaboration with Lidia P. Vergasova (vlp@kcs.iks.ru; Institute of Volcanology RAS, Petropavlovsk-Kamchatskiy). In the course of these studies, about 25 new mineral species were discovered, most of them being oxosalts. Many of these structures contain additional oxygen atoms coordinated by four metal atoms M (Cu, Pb, etc.), forming oxo-centered OM₄ tetrahedra, a new concept in inorganic crystal chemistry, (S.V. Krivovichev, skrivovi@mail.ru and S.K. Filatov). Microbiological activity was revealed in the transformation of volcanic products to bauxites.

The Group of O.V. Frank-Kamenetskaya (Olga@of3102.spb.edu) studies the structure and classification of minerals with atomic defects (solid solutions, mixed crystals, compounds of non-stoichiometric and variable composition). The group uses X-ray based analytical approaches to study chemically inhomogeneous “single crystals” and have characterized a series of solid solutions (fluorides, sulfides, oxides, silicates). O.V. Frank-Kamenetskaya, I.V. Rozhdestvenskaya, Crystal Chemistry. V. 33, 2nd Revised Edition, SPb: Janus, 2004.

The crystallogenesis group headed by Arkadii E. Glikin (glikin@ag2460.spb.edu) has elaborated upon and extended the fundamentals of crystal formation in solutions to describe solid phase interactions typical of minerals: metasomatic replacement and joint growth of different crystal phases, mixed crystal formation, aggregate recrystallization, epitaxial and quasi-epitaxial overgrowth as well as crystal habit formation. A.E. Glikin, Polymineral-Metamastic Crystallogenesis. St. Petersburg; Ed. Journal “Neva”, 2004. 320 p. In September 2001, An International Conference on Crystallogenesis and Mineralogy was organized.

The Crystal chemistry of paraffins group (Elena N. Kotelnikova, elena@el7740.spb.edu, and S.K. Filatov) has studied normal alkanes CₙH₂ₙ₊₁ and as representatives of the rotatory state of crystalline matter. Experimental data on structural deformations, phase transitions, solid solutions, and phase equilibria of synthetic (n=17-24) and natural (n=17-37) n-paraffins have been obtained and generalized as functions of homological composition and temperature. In additions, phase diagrams of binary paraffin systems have been developed (“Neva”, 2002, 352 p. (in Russian)). The First Russian Meeting on Organic Mineralogy was held in 2002 (chairmen: E.N. Kotelnikova and S.K. Filatov).

The Crystal chemistry of uranyl and heavy metal compounds group (Sergey V. Krivovichev, skrivovi@mail.ru) investi-

gates uranium and heavy-metal minerals and inorganic compounds relevant to the safe disposal of radioactive waste and environmental pollutants (in collaboration with Peter C. Burns, University of Notre Dame, USA). As a result of this joint effort, more than 90 original structure determinations have been completed. This provides a unique basis for understanding the stability of uranium and heavy metal minerals in the environment and their role in environmental pollution.

The Pathology of crystals group of Yuri Punin (Head of the Dept., olga@os2489.spb.edu) investigates crystall growth instability that leads to the drastic distortion of the outer form and inner structure of crystals during their growth. As a result of this research, a theory of autodeformation defects has been elaborated. The group also developed a complex approach to the problem of growth dis-symmetrization and the nature of optical anomalies in crystals on the basis of extensive kinetic and morphological studies of crystal growth in a surface-active environment.

The Tubular silicate group of Ira V. Rozhdestvenskaya (ivrozhestvenska@mail.ru) works on alkali calcium silicates with tubular radicals, including studies of such exotic silicate minerals as frankamenite, canasite, miserite, tokkote, tinsakite and agrellite found in charoite rocks of the Murun massif, western Aldan Shield, southeastern Siberia. They are layer structures that consist of alternating structural modules: walls of Ca, and Na, Na-polyhedra with silicate anions located between the walls. The silicate anions form tubes or bent ribbons in wide channels.

X-ray Laboratory, Dept. of Inorganic Chemistry, Faculty of Chemistry. The laboratory is involved in studies of inhomogenous crystals (solid solutions decomposition, nucleation) and nonstoichiometric compounds (R.A. Zvinchuk, Head of the lab); structures of modified steroid estrogens exhibiting selective biological activity and analysis of structure-property relationships for creation of new drugs (CCDC 164249-164261) (G.L. Starova, starova@VK4829.spb.edu); short-range order in complex stoichiometric “disordered” oxides with heterovalent isomorphism and Rietveld refinement (Yu.E. Smirnov); and construction of derivative structures on the basis of non-charac-
teristic crystallographic orbits and cyclotomical Patterson’s sets.

Contacts have been included in the text.
Using liquid nitrogen to heat the sample...
...now that’s a hot idea!

It might sound illogical, but it works!

The new Cryostream Plus is as stable at 500 Kelvin (227°C) as it is at 80 Kelvin (-193°C), giving you the flexibility to heat & cool your sample at the touch of a button.

Maintaining the low nitrogen consumption, high stability and excellent performance for which the Cryostream is renowned, the Plus simply offers that little bit more: 100°C more to be precise.

And with generous options available for trading in or upgrading your old system, this could be the perfect opportunity to turn up the heat on your research!

We look after our technology so you can look after yours!
CRYSTALLOGRAPHY IN RUSSIA

Laboratory of Diffraction Methods in Kazan

In 1996 the Centre of Physical Methods of the Russian Foundation for Basic research was established at the The A.E. Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific Centre of the RAS in the Volga region. The laboratory has two CAD4 Enraf-Nonius diffractometers and a scientific staff of two doctors of chemical sciences, four Phds and several post graduate students. The laboratory performs X-ray diffraction studies for the Arbuzov Institute, for universities and institutes of Kazan, as well as for research institutes of the Volga region, Ekaterinburg, Ufa, Irkutsk, and St. Petersbourg. About 200 structures of organic, phosphorus-containing, organoelement and metalloorganic compounds are studied annually.

Major research at the institute involves the synthesis and structures of phosphorus compounds, macrocyclic and cage organic compounds, and supramolecular chemistry using a variety of physical methods. I.A. Litvinov conducted a series of experiments on cyclic phosphorus-containing compounds including unsaturated 6- and 7-membered phosphaheterocycles. It was shown that a model of hyperconjugative stereoelectronic interactions can describe the position of the substituents on the phosphorus atom, as well as the variations of molecular geometry in the absence of strong intermolecular interactions, such as hydrogen bonding.

Recent studies have revealed a pattern of localized hydrophobic and hydrophilic domains in supramolecule systems. Analysis of a variety of crystals revealed 4 types of packing depending on the ratio of hydrophilic and hydrophobic regions; homogeneous, spherical, cylindercal, and lamellar. The type of packing correlates with the symmetry of a crystal. Lamellar packing is observed only for low symmetry (triclinic – orthorhombic) rod type crystals and for low symmetry tetragonal and trigonal crystals, while homogeneous and spherical domains can be observed in all crystals, even in cubic systems.

A series of investigations of molecular complexes of isosteviol revealed that isosteviol forms isostructural tetragonal crystals in molecular complexes with aromatic compounds having a guest-host ratio of 1:2. This phenomenon may be used to separate spatial isomers of aromatic compounds.

Contact: Igor Litvinov
litvinov@iopc.knc.ru

Kurnakov Institute of General and Inorganic Chemistry, Moscow

In the Kurnakov Institute of General and Inorganic Chemistry, there are two laboratories that study crystal structures of different classes of compounds, namely, the Laboratory of Crystal Chemistry of Coordination Compounds and the Laboratory of X-ray Structure Analysis. The Laboratory of Crystal Chemistry of Coordination Compounds was founded in 1945 by G.B. Bokii, who led the laboratory until 1959. In 1959-1990, the laboratory was headed by M.A. Porai-Koshits, and since 1990 it has been headed by V.S. Sergienko.

For many years the wide variety of interests of M.A. Porai-Koshits determined the compounds studied in the laboratory: complexes of Group V-VII metals with multiple metal-oxygen bonds; isopoly- and heteropolycompounds; binuclear complexes of Rh and other Group VIII metals containing metal-metal bonds; d-metal complexes with organic chelating O-, N-, and S-donating and macrocyclic ligands; heterometal clusters; optically active Pt complexes with amino acid ligands; mono-, di-, and triaminocarboxylates and their mono- and diphosphonate analogues; isoquinoline derivatives and their complexes; amino- and phosphoryl-containing podands; and mixed-ligand Au(I) and Hg(II) complexes.

New projects at the laboratory include:

1. Investigation of a wide spectrum of secondary interactions (traditional hydrogen bonds, C-H⋯π contacts, proton-hydride, attractive, agostic, and stacking interactions, etc.) that play an important role in the formation of crown-ether styryl dyes, charge-
Researchers in the Laboratory of X-ray Structure Analysis.

transfer complexes based on π-donating bis(18-crown-6)stilbenes, diaryl esters exhibiting liquid-crystalline properties, and dipyridyls and their coordination polymers with Ag(I).

(2) The trans effect of multiply bound peroxo ligands in pseudo octahedral VO(η-O2)₄ complexes (where L is a donor atom of a monodentate and/or polydentate ligand) was characterized and the structures of the Group IV-VI metal (Ti, Ta, V, Nb, Mo, W) oxoperoxo complexes of this type were analyzed;

(3) Specific features of regioselective acid-catalyzed substitution of exo-polyhedral hydrogen atoms in the decaborate anion B₄H₁₀²⁻ were studied. The main product of these reactions is the equatorially monosubstituted derivative.

(4) Structures of LaL₄(Phen) mixed-ligand complexes (where L is dipivaloylmethanate or hexafluoroacetylacetonate) were determined to establish correlations between the structure and luminescence properties.

The Laboratory of X-ray Structure Analysis was organized in 1934 by N.V. Ageev (1934-1953) and N.G. Kuznetsov (1953-1979). Yu.N. Mikhailov has been the head of the laboratory since 1979. The studies performed in the laboratory are related to the interests of other laboratories of the Institute, including the relationships between the composition, structure, and properties of coordination and inorganic compounds. One of the most interesting results was obtained in the laboratory in the 1960s when the first quadruple rhenium-rhenium bond was revealed in the [Re₂Cl₄]²⁻ anion. Later, the interpretation of this bond was confirmed by F.A. Cotton. During the last five years, investigations of monomeric, dimeric, and trimeric compounds of rhodium, iridium, molybdenum, and platinum at different oxidation states have been performed along with the studies of polynuclear compounds containing complex metal-metal bond systems.

Important results have been obtained for nontransition p elements at low oxidation states. Mixed-ligand polymeric compounds of tin(II) with nitrogen-containing organic cation supramolecular compounds having large hollows and channels. Some uranyl complexes with fluoride ligands and tetradeinate bridging oxalate ions contain infinite channels approximately 7-10 Å in cross-section. Channels that are formed by cyclic dioxygen anions were found in the structures of some bora-tobismuthates, the high-temperature modification of Na₆B₂O₇, and double potassium-bismuth citrate.

A large series of mixed-cation RE compounds with condensed anions (phosphates, phosphotborates, phosphatogermanates, germanates, oxophosphovanadates) have been studied to reveal the effect of cations on the structure of the anionic group. It was found that in the noncentrosymmetric ultraphosphates, the (P₂O₇)⁶⁻ anion contains isolated oligomers consisting of three connected six-membered rings. These compounds are candidates for quantum electronics. In the last three years, efforts have involved structural studies of polymeric coordination compounds of tin, bismuth, and uranyl with bridging oxo anions, polymeric complexes of silver with nitrogen-containing organic compounds, supramolecular compounds of doubly and triply charged metals with hexamethylenetetramine and different amino(poly)carboxylic acids. Crystal structures of these compounds contain large hollows and channels that can be used for preparation of molecular sieves and ion exchangers. Over 150 crystal structures a year are determined by two groups using two Enraf-Nonius CAD-4 diffractometers.

Contacts: V. S. Sergienko (sokol@igic.ras.ru), Yu. N. Mikhailov (mikhailov@igic.ras.ru)

Electron Density at Mendeleev University

Research in the Mendeleev University group, headed by Vladimir Tsirelson, deals with describing bonding in solids in terms of electron density and electrostatic potential, as well as related functions describing local energies and potentials. Early studies were based on the Bader’s quantum mechanical topological theory, which was applied to experimental electron density for the first time by Tsirelson and Streltsov in 1985. This approach is now widely accepted. The extensive range of compounds studied spans simple and binary crystals, perovskites, spinels, garnets, silicates, and molecular crystals. The materials were studied using topological theory to quantify atomic and molecular interactions and to elucidate the physical nature of the spatial architecture of crystalline systems.

Other studies are devoted to topological analysis of the electrostatic potential in molecules and crystals. It has been demonstrated that the nuclei of neighboring atoms are separated in the inner-crystal electric field by surfaces of the zero-flux potential gradient, inside of which the nuclear charge is completely screened by an electronic cloud. These electrically neutral bonded pseudoatoms define the regions in a crystal dominated by a charge of one or another nucleus, no gradient lines connecting the anions were found. The results led to a physically reasonable description of the Coulomb field features in a system, which is a key point in the development of corresponding models for force field.
Most recently fundamental research has been the performed in collaboration with X-ray laboratory of the Karpov Institute to combine experimental electron density with the formulæ of density functional theory to calculate kinetic energy, potential energy, and exchange energy, etc. It has been shown that maps of kinetic and potential energy densities explicitly reveal features of electronic energy resulting from the molecule or crystal formation, while the integral values of these functions over the atomic basins yield the components of the electronic energy for the bounded atoms. Becke et al.’s electron localization function and localized-orbital locator (see figure) and Parr et al.’s local temperature and local internal entropy of electron gas have also been approximately expressed in terms of electron density and its derivatives. As a result, X-ray diffraction experiments have been extended to provide detailed descriptions of atomic and molecular interactions in a crystal in a form compatible with a quantum mechanical picture.

Contacts: Vladimir G. Tsiirelson tsiire@muctr.edu.ru

Inorganic Structure in Samara

At Samara State University (SSU) crystallographic and crystalchemical research is conducted in the department of inorganic chemistry. Basic areas of study include: (i) development of computer methods for crystallochemical analysis (V.N. Serezhkin, V.A. Blatov, A.P. Shevchenko), (ii) structure and properties of uranium complexes (L.B. Serezhkina) and compounds containing atoms with lone pairs (D.V. Pushkin).

At present SSU researchers are working on a unique program package (TOPOS) for multi-purpose crystallochemical analysis (a user manual and demo and beta versions are available at www.topos.ssu.samara.ru/). TOPOS is an integrated interactive shell that supports a relational crystal structure database. To analyze crystal structure information TOPOS uses methods based on the quantitative characteristics of crystallochemical analysis. It avoids using crystallochemical radii or a priori assumptions concerning the nature of interatomic bonds. The methods provide for unified analysis of crystalline substances at the atomic, molecular and supramolecular levels. Commercial and non-commercial versions of TOPOS are installed in a number of institutes of the RAS and in universities in France, Japan, Italy, Spain, and the UK.

TOPOS was created to (i) implement and combine computer methods of crystallochemical analysis within a unified data-analytical system; (ii) provide resources for the complex automatic analysis of large groups of chemical compounds to search for common crystal-chemical features; and (iii) maintain objectivity while performing crystallochemical analysis.

TOPOS provides the user with tools to (i) calculate coordination numbers of atoms or molecules, (ii) assess a number of geometrical characteristics of atomic and molecular domains; (iii) estimate stereo effects caused by lone pairs or by the Jahn-Teller effect; (iv) analyze the far coordination spheres of atoms or molecules, and study the topology of atomic and molecular packing; (v) search for topological relationships between chemically and stoichiometrically different crystal structures, perform crystallochemical classification; (vi) estimate sizes of voids, cavities and channels in crystals, reveal agostic contacts and non-valence interactions; and (vii) predict stability of coordination compounds and supramolecular aggregates.

Various aspects of TOPOS have been demonstrated by analyzing different inorganic and coordination compounds including σ- and π-complexes, minerals, superionic conductors, zeolites, etc. Using uranium(VI) compounds as an example it was shown that the solid angles by which the faces of a Voronoi-Dirichlet polyhedron are ‘seen’ from the nucleus of a complexing atom can be used to evaluate the electron-donor capabilities of oxygen-containing ligands with the 18 electron rule. It has been proven that using the ligand electron-donor characteristics obtained with crystal structure data, one can predict the directions of stepwise complexation in water solutions as well as the composition and structure of resulting uranium(VI) complexes.

Contacts: serezhkin@ssu.samara.ru

Molecular Voronoi-Dirichlet polyhedra (a) of a cavity and (b) of a substrate molecule inside a cucurbit[6]uril molecule.
of the Executive Committee would require revisions to the bylaws, another matter for possible consideration by the delegates to the Florence General Assembly.

The Executive Committee of the IUCr also reviewed recommendations from the National Committees of the Union for membership in the many commissions of the Union. Nominations for membership on the commission were forwarded to the Secretary of each Commission. I was pleased to receive a copy of a letter that Ian Robinson, the Chair of the Commission on Synchrotron Radiation, sent to all members of his commission requesting their suggestions for the composition and activities of the Synchrotron Commission for the next triennium. Because the Union makes no formal recommendations concerning how the nomination process should be conducted by individual commissions, I thought that other commission Chairs might benefit from reading Ian’s letter.

I asked Ian if I could circulate a copy of his letter to the other Commission Chairs and he agreed. I realize that the needs and goals of the various commissions vary, nevertheless, I think Ian’s letter might prove useful to all commission members. If you are currently a member of an IUCr Commission, I urge you to provide useful input to the Secretary and Chair of your commission along the lines recommended by Ian.

This issue of the Newsletter includes the second and final installment of the survey of crystallography in Russia gathered and organized by Leonid Aslanov. Material for an issue on crystallography in Australia and New Zealand, gathered by Jenny Martin has been received. We hope to have contributions from all 40 member countries, but no formal plan exists and no details are available at www.hwi.buffalo.edu/ACA/.

Dear Members of the IUCr SR commission

In the run-up to the IUCr general assembly in Florence at the end of next August, there will be some organizational activities for the SR commission. I have reviewed the "General Statement of Principles" governing IUCr commissions (on the web) which outlines the procedure. We need to decide who should rotate off the roster and who should be added. This means we need to have an election.

The SR commission is fairly new and has not fully settled into a clear routine, but is now close to steady-state. We consist of 9 members with a maximum term of 9 years. For a 3-year cycle, it make sense that we should aim to rotate 3 members every cycle. I have received a list of 15 nominees, originating from the national affiliate organizations of the IUCr, from which we should select 3. Two of these nominees are already on the commission, so I think we do not need to consider them again.

So please tell me your preferences from the following list of nominees. Send me an email reply with 3-5 (ranked) choices BY JANUARY 15, 2005. I will tabulate the votes at that time and announce the selection.

A. Aritoli Italy powder
B. Castro Spain surface
S.-L. Chang ROCChina theory
M.A. Garcia-Aranda Spain powder
R. Garrett Australia instrumentation
J.L. Hodeau France single crystal
K. Lwarczak-Jablonska Poland surface
K. Kjaer Denmark surface
C. Nave UK protein instrumentation
R. Paniago Brazil interfaces
S.M. Sharma India high pressure
M. Takata Japan powder
S. Wakasugi Japan protein

To decide which of the class of 1999 should rotate off, let me first ask for volunteers. This is an extraordinary situation, given that we have only been in existence for 2 IUCr cycles. If this does not work, I will suggest who should stand down in order to try to balance subject areas and expertise. Less active members risk being contacted first!

FYI our current roster is:

I. Robinson (C) USA 1999 surface
LTJ Delhaere Canada 1999 proteins
H. Graafsma France 2002 instrumentation
SM Gruner USA 1999 biophysics
H. Kimura Japan 1999 undulators
GN Kulipanov Russia 2002 SR instrumentation
T. Matsushita Japan 1999 x-ray optics
D. McMoror UK 2002 neutrons
J. Schneider Germany 1999 single crystal

Last, but not least, we need to choose a NEW CHAIR. Though not a statutory requirement, it is customary (and I think it is a good idea) to rotate every cycle to maintain the vitality of the commission. So please nominate one of the current roster that you think would be desirable. Self-nominations are especially welcome. I will collate the nominees, and ask you to vote if necessary. The deadline for nominations is also JANUARY 15, 2005.

In other business, we have the opportunity to request money from IUCr to support our activities before MARCH 2005. In the past we have endorsed relevant conference activity and sponsored attendance at relevant workshops, for the purpose of reporting back to the IUCr.

Our commission tries to promote the access to SR facilities by crystallographers that do not otherwise have easy access. It tries to disseminate relevant technical information about advances in instrumentation and help establish standards between facilities where appropriate. We have a special interest in X-ray detectors, the development of which is often neglected by the facilities themselves. Thank you all for your efforts to help reach these goals.

Ian Robinson
SR Commission chair

LETTER FROM THE PRESIDENT continued from Page 1

NOTICES, AWARDS, ELECTIONS

The Jeffrey Award Call for Applications

A fund established by the Pittsburgh Diffraction Society (PDS) in memory of George A. Jeffrey will be used to assist outstanding students to attend the XX Congress of the IUCr to be held in August 2005 in Florence. Applications are invited worldwide. These must be from graduate students in good standing at the time of the Congress.

Applications must be received no later than April 27, 2005. They will be judged by B. Craven, H. Berman (Rutgers U.) and R. Stewart (Carnegie-Mellon U.). The important criteria will be the scientific excellence of the student’s research, the student’s financial need and the student’s proficiency in English, the official language of the Congress. The Jeffrey Award will cover at least the registration fee and the cost of student housing.

Further information is available at www.pittdifsoc.org/.

AGA 2006 Etter Early Career Award Call for Nominations

This award recognizes outstanding achievement and exceptional potential in crystallographic research demonstrated by a scientist at an early stage of their independent career. The award was established to honor the memory of Margaret C. Etter (1943-1992), who was a major contributor to the field of organic solid-state chemistry. Her work particularly emphasized the use of hydrogen bonds and co-crystals. Established in 2002 as an annual award, it consists of a monetary award of $1,000 and plaque. The winner will present a lecture at the American Crystallographic Assn Annual Meeting.

Scientists involved in crystallographic research in the broadest sense are eligible for the award. At the time of the closing date for nominations, nominees must have begun their first independent (not postdoctoral) position within the past 6 years. Self-nominations are not permitted. Deadline for submission is March 1, 2005. Further details are available at www.hwi.buffalo.edu/AGA/.
High-Throughput Crystallography from Rigaku/MSC, Inc.

- **Alchemist I™** - Custom screen making system that revolutionizes liquid handling with its patent-pending, tubeless “bird-feeder” technology. Eliminates cross contamination and increases reliability.

- **Minstrel III™** - High-resolution, color imaging system specifically designed to address the unique challenges of high-throughput protein drop imaging. Quickly and consistently images hanging, sitting, or microbatch drops in any plate type.
to structure

- **ACTOR** - Automated Crystal Transfer, Orientation and Retrieval robot.
- **High-Throughput HomeLab™** - Maximize your productivity with the revolutionary MicroMax™-007 rotating anode generator. With the patent-pending Osmic VariMax™ confocal optic system and a sensitive Rigaku detector, this system has set the standard of excellence for the home laboratory.
- **CrystalClear™** - CrystalClear provides a complete, unified GUI for automatic data collection and processing.

Rigaku/MSC, Inc.

for all your high-throughput tools
Reminiscences from ECM-22
Budapest, Hungary, August 25-31, 2004

The 22nd meeting of the European Crystallographic Assn, ECM-22, attracted nearly 700 people in Budapest, the capital of Hungary. It was a memorable meeting. The charm of Budapest, accentuated by the bridges on the majestic Danube River, the hills, and the impressive architecture, will live in the memories of the participants, as will the smooth organization of the conference. This we owe to A. Kálmán, Chair of the Organizing Committee, and to his young adjutants, L. Fábián and P. Bombicz. Special thanks are due to Petra who, as the Secretary, took quiet and efficient responsibility of almost everything. The months leading to ECM-22 had been very busy, but the work was well organized, a source of satisfaction for those involved.

Everything was handled electronically, even the deliberations of the Bursary Committee. Thanks to generous help from the IUCr and the ECA, nearly 100 young scientists were awarded financial support. And youth was surely visible in all the activities of the meeting. This is a good prognosis for the future of our discipline in Europe. A sad point is, that over 20 of the awardees did not show up or withdrew at the last minute.

The meeting’s home was the new Convention Centre and the Chemistry Dept. of the Eötvös Loránd U. There were some small inconveniences (such as overflowing seminar rooms and poor audio facilities in the main hall) but they are already forgotten, suppressed by the overwhelmingly positive impressions. The participants and exhibitors were particularly happy with the central location of the exhibition area. It became the favorite place for chatting with friends and for scientific discussions. People were crowding at the booths with instruments and supplies but also, I’m glad to note, around the two book stands. The printed word seems to be doing fine in the era of electronic information.

The scientific program covered virtually all aspects of crystallography and a spectrum of interdisciplinary subjects, from materials sciences to molecular biology. There were 42 microsymposia and 16 plenary lectures. A quick look at the keynotes shows topics covering new phasing and statistical methods, new materials, data mining and molecular recognition, biological membranes and virus structure, extreme and special techniques, and even robotics and e-science! Perhaps the spectacularly dynamic field of macromolecular crystallography was somewhat underrepresented, but this view may be biased by my personal interests.

In retrospect, I have the most vivid memories from the opening ceremony. It was then that the ECA presented for the first time the Max Perutz Prize. It went to George Sheldrick, an Englishman working in Germany. The ECA has already awarded a number of prestigious prizes (Ada Yonath 2000, Jochen Schneider, 2001, Carmelo Giacovazzo, 2003), but Max Perutz became their patron only this year, on the initiative of the Executive Committee. Max Perutz, who passed away two years ago, was one of the giants of European crystallography. An Austrian working in England, Perutz pioneered an entirely new area in crystallography. It is, therefore, very befitting to honor the most creative European crystallographers with a diploma bearing the name of Max Perutz. The title on the diploma handed to George Sheldrick by Hartmut Fuess, President of the ECA, and Anders Liljas, Chair of the Prize Committee, reads: “for seminal contributions to the development of direct methods and for converting the theory into straightforward procedures for solving small and large crystal structures”.

In his address following the presentation ceremony, George remarked that he had overlapped with Max Perutz for 18 years at Cambridge without ever having any direct contact! George was then in inorganic chemistry at the University Chemical Lab, and Max Perutz was in the Medical Research Council. George offered three interesting thoughts. (1) Crystallography is a truly interdisciplinary science. While this is quite obvious, the corollary is that rigid administrative constraints should not impede migration of crystallographers to new areas. George is the best example of what benefits such migrations bring: started in inorganic chemistry, went to crystallographic methodology and organic crystal chemistry, to finally make very important contribution to protein crystallography. (2) Crystallographers should talk to each other; for example, small molecule crystallography can learn a lot about model bias from macromolecular crystallography, and macromolecular crystallographers do not have to re-discover things that are only too familiar in the small molecule field (for instance C-H and π hydrogen bonds). (3) Openness and sharing is more beneficial to everybody than not sharing. He illustrated this with computer programming practices.

In the early days, open code was the only way to distribute programs. Today, the situation has changed. But is it for the better?

With a note of pride, Hartmut Fuess emphasized that European crystallographers, as a community and as individuals, have definitely contributed to the integration of the Old Continent and perhaps even to the enlargement of the European Union. From the conception of the ECM’s, the idea has been to bring the East and West together, to avert isolation. In this sense, the fact that the first ECM after May 1, 2004, was held in Budapest, one of the new capitals of the enlarged European Union, is symbolic in itself.

It must be noted here that the geography professed by crystallographers is different than in popular atlases. For example, Israel has been a member of our community “since always”, and the continent of Africa is in fact part of crystallographic Europe. The previous ECM was held in Durban, on the southern hemisphere! But despite all the integrative efforts, there are still white patches even on the map of Old Europe. To overcome this, the Executive Committee is extending invitations to join the ECA to all those countries where there is at least some crystallographic activity. In this spirit, we had, as observers, colleagues from Belarus and Moldova.

When Bill Duax, President of the IUCr, took the podium during the opening ceremony, he unfolded an even more global view. In a unique way, crystallography has formed a clear international community, and has contributed to understanding and contacts between people all over the world. This fantastic role of uniting people around common intellectual ideas may have far-reaching effects; perhaps it can contribute to fighting terrorism in a better way than many political actions.

Alajos Kálmán, with typical Hungarian hospitality, presented the guests of honor with souvenirs at the opening session. “Bill Duax will not be present at the closing ceremony”, he said. Bill,
who is known as a strong advocate of full conference participation, responded quickly and firmly, explaining that, under very exceptional circumstances, he had to leave on the eve of the last day.

In Budapest, I was accompanied by my son Maciej (17). To my despair, his interests are far from scientific, but I took him to the opening ceremony, to one of the scientific sessions, and to the closing ceremony on the Danube cruise. And he was very impressed. Not by the scientific content, but by the atmosphere and the general family-like feeling. He thought that everybody knew everybody in Budapest. And we were quite a crowd!

Mariusz Jaskolski, ECA Vice President

ECM-22 Satellite
Crystallography at the Start of the 21st Century: Mathematical and Symmetry Aspects
Budapest, Hungary, August 2004

The XXII European Crystallographic Meeting, held in Budapest, Hungary, was preceded by a three-day Satellite Meeting on Crystallography at the start of the 21st century: Mathematical and Symmetry Aspects, which represented the first public activity of the MaThCrysT International Workgroup (www.lcm3b.uhp-nancy.fr/mathcryst/), created to draw the attention of researchers working in crystallography and related fields to the fundamentals aspects too often neglected in favor of a blind machine-based solution strategy (IUCr Newsletter, 10(3), 2003).

The Satellite, supported by the Hungarian National Committee of the IUCr and the ECM-22 Organizing Committee, and sponsored by the Commission on Inorganic and Mineral Structures of the IUCr (IUCr-CIMS), was attended by 51 participants with different backgrounds (chemistry, physics, mineralogy, mathematics...) from 20 countries. There were six thematic sessions on diverse topics such as gnomonometry (twinned crystals), OD structures, normalizers of space groups, graph theory, chirality and achirality in crystal structures, higher dimension crystallography, tilings and ball packings, modulated structures, and quasicrystals. The proceedings will soon appear in a special issue of Zeitschrift für Kristallographie and will include peer-reviewed original and review articles by the lecturers, as well as contributed peer-reviewed articles by the participants.

The satellite also included poster sessions. The electronic version (PDF file) of the abstracts is available for download from the website (www.lcm3b.uhp-nancy.fr/mathcryst/satellite.htm).

The next public activity of the MaThCrysT group will be a Summer School on “Mathematical and Theoretical Crystallography” at the U. Henri Poincaré in Nancy, France, June 20-24, 2005, under the auspices of the IUCr and of the ECA (see announcement in IUCr Newsletter, Vol. 12, No. 3, page 22 or visit www.lcm3b.uhp-nancy.fr/mathcryst/nancy2005.htm).

Massimo Nespolo, Organizer, ECM-22 Satellite Meeting

IUCr Newsletter Volume 12, Number 4 2004

MEETING REPORTS

FUTURE MEETINGS

Art and Crystallography at the XX IUCr Congress
Florence, August 23-30, 2005

The intrinsic beauty of crystals and molecules has been a source of inspiration for many artists. For instance, Salvador Dali transformed an ORTEP drawing into a piece of art, which is now hosted in his home museum of Figueres (Spain). To get an idea of this work visit www.3d-dali.com/3D-ROOM/newpage8.htm. Florence, as one of the most renowned centers for art, will devote special initiatives to these aspects during the XX IUCr Congress.

Edgar Meyer and Magdolna Hargittai will chair a special Microsymposium dedicated to “Art and Crystallography”. Among the invited speakers, there are authorities who have made important links between science and art. Doris Schattschneider, a mathematician, engages in topics such as the tiling of polyhedra, dynamic geometry, geometry and art, and visualization in teaching. Martin Kemp, a History of Art Professor at the U. of Oxford, devotes his main interest to the relationships between scientific models of nature and the theory and practice of art. Georges Tiouacari of the Laboratoire de Recherche des Musées de France, a colleague crystallographer and supramolecular chemist, dedicates his activities also to molecular and structural archaeology and to the preservation of art. Given the relevance of the microsymposium for the general public, the organizers have decided to shift the time from the parallel sessions to an unique after dinner event (Friday, Aug. 26th).

The second initiative is a juried exhibition of art related to crystallography, to be held in the congress headquarters. Contributions are invited in the following areas: 1) Graphic arts 2) Musical arts 3) Plastic arts 4) Decorative arts 5) Original art forms. For details see www.iucr2005.it.

The XX IUCr Congress, characterized by a top level scientific program (with the participation of more than 500 speakers, experts in all areas of crystallography and including three Nobel Laureates) in the spectacular Florentine setting offers an additional and completely new opportunity to researchers, who can present their scientific results to an international and qualified audience for the first time in an artistic format.
A selection of future meetings. A more complete list is available at www.iucr.org. Corrections and new listings are invited by the Editor.

MAY 2005

24-28 ◆ 2nd Int'l Conf. on Photo-Induced Phase Transitions; Cooperative, non-linear and functional properties. Rennes, France. www.gmcm.univ-rennes1.fr/pipt/.
28-2 ◆ ACA Annual Meeting. Walt Disney World, Orlando, FL, USA. www.hwi.buffalo.edu/ACA/.

JUNE 2005

15-18 ◆ 14th Croatian-Slovenian Crystallographic Meeting. Vrsar (Istria), Croatia. www.hazu.hr/kristalografi, atonejc@phy.hr, spopovic@phy.hr.

AUGUST 2005

OCTOBER 2005

Bruker AXS has launched a complete product line that provides you with the tools for high throughput structural genomics.

The Crystal Farm Imaging System brings you integrated incubation and imaging as well as crystal plate storage and retrieval to simplify and automate the protein crystallization process.

Our BruNo automates X-ray screening needed for high speed structural genomics, to rank which crystal of many is to be used for full data collection.

Our PROTEUM home laboratory research system collects complete X-ray data better and faster, using the latest high brilliance MICROSTAR source and the highest sensitivity, fast readout PROTEUM CCD detector to see diffraction to higher resolution.

Contact us now to learn more about these exciting new solutions for high-throughput Life Science applications!
The X’Celerator: the standard in X-ray powder diffractometry

The sea eagle spots its prey from far above the water’s surface - compensating for the diffraction of light in water - dives with breathtaking pace and catches it with amazing accuracy. A solution demanding not only speed, but also resolution.

The X’Celerator, PANalytical’s ultra fast X-ray detector based on Real Time Multiple Strip (RTMS) detection technology, combines these two demands in one maintenance-free device. Since its introduction in 2001, the number of installations is now rapidly approaching 1000. Many users have already recognized the power of this concept and are using this detector on a routine basis to increase the sample throughput, to lower the detection limits for minor phases, and to record diffractograms with an unrivalled angular resolution.

At PANalytical, we deliver high-quality products, not promises. Go with the proven leader in high-speed, high-resolution detection technology: the X’Celerator.

For more information:
PANalytical B.V.
P.O. Box 13
7600 AA Almelo
The Netherlands
Tel: +31 (0) 546 534 444
Fax: +31 (0) 546 534 598
info@panalytical.com

www.panalytical.com

Speed and resolution